magnetic znfe2o4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant
Authors
abstract
zinc ferrite (znfe2o4) nanoparticles were synthesized via the auto-combustion assisted sol-gel method of zn2+ and fe3+ ions (molar ratio 1:2) in ammonia solution. the prepared nanomagnetic catalyst was characterized by ir, xrd, sem and icp. the diameter of the znfe2o4 mnps (63.7 nm) was determined by debye-scherre equation via their xrd pattern. nanomagnetic znfe2o4 efficiently catalyzes oxidation of alcohols and gave the corresponding carbonyl-containing products in good yields. the reactions were carried out in an aqueous medium at r.t in the presence of oxone (potassium hydrogen monopersulfate) as an oxidant. in addition, the catalysts could be reused up to 5 runs without significant loss of activities.
similar resources
Magnetic ZnFe2O4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant
Zinc ferrite (ZnFe2O4) nanoparticles were synthesized via the auto-combustion assisted sol-gel method of Zn2+ and Fe3+ ions (molar ratio 1:2) in ammonia solution. The prepared nanomagnetic catalyst was characterized by IR, XRD, SEM and ICP. The diameter of the ZnFe2O4 MNPs (63.7 nm) was determined by Debye-Scherre equation via their XRD pattern. Nanomagnetic ZnFe2O4 efficiently catalyzes oxidat...
full textMagnetic ZnFe2O4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant
Zinc ferrite (ZnFe2O4) nanoparticles were synthesized via the auto-combustion assisted sol-gel method of Zn2+ and Fe3+ ions (molar ratio 1:2) in ammonia solution. The prepared nanomagnetic catalyst was characterized by IR, XRD, SEM and ICP. The diameter of the ZnFe2O4 MNPs (63.7 nm) was determined by Debye-Scherre equation via their XRD pattern. Nanomagnetic ZnFe2O4 efficiently catalyzes oxidat...
full textMagnetic NiFe2O4 Nanoparticles as an Efficient Catalyst for the Oxidation of Alcohols to Carbonyl Compounds in the Presence of Oxone as an Oxidant
Nanomagnetic NiFe2O4 was used as the efficient, stable, reusable catalyst for selective oxidation of alcohols to their corresponding carbonyl compounds using oxone (potassium hydrogen monopersulfate) as oxidant in the presence of water as solvent at room temperature. The oxidation of various primary and secondary alcohols has been examined and related corresponding products were obtained wi...
full textmagnetic nife2o4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant
full text
nano-rods zno as an efficient catalyst for the synthesis of chromene phosphonates, direct amidation and formylation of amines
چکیده ندارد.
Aqueous-phase oxidation of alcohols with green oxidants (Oxone and hydrogen peroxide) in the presence of MgFe2O4 magnetic nanoparticles as an efficient and reusable catalyst
Nanomagnetic MgFe2O4 is an active, stable, and reusable catalyst for the oxidation of alcohols. The oxidation of various primary and secondary alcohols has been examined and related corresponding products were obtained in good yields. The reactions were carried out in the presence of water as solvent and oxone (at room temperature) or H2O2 (at 60 ºC) as an oxidant. The catalyst was investigated...
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of catalysisPublisher: islamic azad university, shahreza branch
ISSN 2252-0236
volume 5
issue 3 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023